American Journal of Heterocyclic Chemistry

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Hypersphere and Antiviral Activity of Three Alkyl Chain Iminocyclitols with D and L Ribitol Stereochemistry

N-Alkyl-C1-dialkyl chains iminocyclitols with D or L-ribitol stereochemistry are synthesized with high diastereoselectivity after Grignard reagents addition to N-quaternary pyrrolines salts, and tested for antiviral activity in bovine viral diarrhea virus (BVDV), surrogate for hepatitis C virus (HCV). Dihedral angles are calculated from carbon chemical shift (δCn[ppm]) with 3-sphere method without building units. 3-Sphere, a hypersphere in 4D, under Hopf fibration and Lie algebra mathematics theories enable calculation of the dihedral angles from the NMR data (vicinal coupling constant 3JHnHn+1[Hz], chemical shift δCn[ppm]). Instead of 3D manifold equations on seven sets unit or six sets units are proposed equations between 4D – 2D, in function of the curvature. The relationship between the antiviral activity and the iminocyclitol structure reveals that monoalkyl chain, N-n-C1-dodecyl β-L-ribitol trifloroacetate salt 30 (IC50 1.5 uM) has higher antiviral activity in tangential space, relative to three alkyl chain, N-Methyl-C1-butil, nonyl-L-ribitol. HCl 26 (IC50 < 2 uM) with torus and Dupin cyclide coordinate, both with coordinates in 2D. Three alkyl chain isopropylidene protected pyrrolidine 25 has in 4D with all equations for calculation of the dihedral angles, and in protected pyrroline 19b double bond moves the coordinates in 2D.

Grignard Addition, Pyrroline, N-quaternary Pyrrolines Salts, Pyrrolidine, N-Alkyl-C1-dialkyl Chains Iminocyclitols, Hypersphere, Dihedral Angles, Vicinal Coupling Constants 3JHH [Hz]

APA Style

Robert Michael Moriarty, Carmen-Irena Mitan, Baohua Gu, Timothy Block. (2023). Hypersphere and Antiviral Activity of Three Alkyl Chain Iminocyclitols with D and L Ribitol Stereochemistry. American Journal of Heterocyclic Chemistry, 9(1), 9-24. https://doi.org/10.11648/j.ajhc.20230901.12

ACS Style

Robert Michael Moriarty; Carmen-Irena Mitan; Baohua Gu; Timothy Block. Hypersphere and Antiviral Activity of Three Alkyl Chain Iminocyclitols with D and L Ribitol Stereochemistry. Am. J. Heterocycl. Chem. 2023, 9(1), 9-24. doi: 10.11648/j.ajhc.20230901.12

AMA Style

Robert Michael Moriarty, Carmen-Irena Mitan, Baohua Gu, Timothy Block. Hypersphere and Antiviral Activity of Three Alkyl Chain Iminocyclitols with D and L Ribitol Stereochemistry. Am J Heterocycl Chem. 2023;9(1):9-24. doi: 10.11648/j.ajhc.20230901.12

Copyright © 2023 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. T. D. Butters, R. A. Dwek, F. M. Platt, Inhibittion of glycosphingolipid biosynthesis: application to lysosomal storage disorders, Chem. Rev. 2000, 100, 4683; doi.10.1021/cr990292q.
2. A. S. Mehta, B. Gu, B. Conyers, S. Ouzounov, L. Wang, R. M. Moriarty, R. A. Dwek, T. M. Block, α-Galactosylceramide and noval synthetic glycolipids directly induce the innate host defense pathway and have direct activity against hepatitis B and C viruses, Antimicrob. Agents. Chemother. 2004, 48, 2085; doi.org/10.1128/AAC48.62085-2090.2004.
3. I. Conforti, A. Marra, Iminosugars as glycosyltransferase inhibitors, Org.&Biomol. Chem. 2021, 19, 5439; doi.org/10.1039/d10b00382h.
4. M. Iftikhor, Y. Lu, M. Zhou, An overview of therapeutic potential of N-alkylated 1-deoxynojirimycin congeners, Carb. Research 2021, 504, 108317; doi.org/j.carres.2021.108317.
5. R. M. Moriarty, C. I. Mitan, N. Branza-Nichita, K. R. Phares, D. Parrish, exo-Imino to endo-iminocyclitol rearrangement. A general route to five-membered antiviral azasugars, Org. Lett. 2006, 8, 3465; doi: 10.1021/ol061071r.
6. B. Han, V. Rajwanshi, J. Nandy, R. Krishnamurthy, A. Eschenmoser, Mannich-Type C-nucleosidations with 7-carbapurines and 4-aminopyrimidines, Synlett 2005, 5, 744; DOI: 10.1055/s-2005-864789: Art ID: S10704ST.
7. E. Bartha, C.-I. Mitan, C. Draghici, M. T. Caproiu, P. Filip, R. M. Moriarty, Program for prediction dihedral angle from vicinal coupling constant with 3-sphere approach, Rev. Roum. Chim, 2021, 66, 178-183; doi: 10.33224/rrch.2021.66.2.08 (Eng).
8. C.-I. Mitan, E. Bartha, C. Draghici, M. T. Caproiu, P. Filip, R. M. Moriarty, Hopf fibration on relationship between dihedral angle θHnHn+1[deg] and vicinal angle ϕ[deg], angles calculated from NMR data with 3-sphere approach and Java Script, SciencePG 2022, 10, 21, doi: 10.11648/j.sjc.20221001.13.
9. C.-I. Mitan, E. Bartha, P. Filip, C. Draghici, M. T. Caproiu, R. M. Moriarty, NMR data on conformational analysis of five and six membered ring under 3-sphere approach. Vicinal constant coupling 3JHH on relationships between dihedral angles and tetrahedral angles, ACS National Meeting in Chicago, IL, August 21- 25, 2022, CARB 3717557, 23 august 2022, 37 pag; doi.org/10.1021/scimeetings.2c00876.
10. C.-I. Mitan, E. Bartha, P. Filip, C. Draghici, M. T. Caproiu, R. M. Moriarty, Two isomers with trans-aa5,2 stereochemistry are calculated with 3-sphere trigonometric equations approach at circle inversion motion from NMR data. Sustainability in a changing world” ACS National Meeting in Chicago, IL, August 21- 25, 2022, CARB 3717658, 22 august 2022, Sci-Mix 23 august 2022; doi.org/10.1021/scimeetings.2c00523.
11. C.-I. Mitan, E. Bartha, P. Filip, Hyperspherecoordinates on calculation of the dihedral angles from carbon chemical shift, Bulletin of Romanian Chemical Engineering Society 2022, 9 (2), 151; ISSN 2360-4697, edited by SICR and Matrix Rom; SICHEM 2022, 29 pag, ISSN 2537-2254, SB OP004, 71, edited by SICR and Matrix Rom.
12. R. Bloch, Addition of organometallic reagents to C=N bonds: Reactivity and selectivity, Chem. Rev. 1998, 98, 1407; doi.org/10.1021/02940474e.
13. R. A. Volkmann, in “Comprehensive Organic Synthesis”: Nucleophilic Addition to Imines and Imine Derivatives, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 1, chap. 1.12, 355; doi.org/10.1016/B978-008-052349-1.00012-3.
14. D. Enders, U. Reinhold, Asymmetric synthesis of amines by nucleophilic 1,2-addition of organometallic reagents to the CN double bond, Tetrahedron: Asymmetry 1997, 8, 1895; doi.org/10.1016/S0957-41669(7)00208-5.
15. G. Pitacco, E. Valentin, “Enamines and Ynamines”, in The Chemistry of Amino, Nitroso and Nitro Compounds and Their Derivatives, Vol. 1, ed. Patai, S.; Wiley, Chichester 1982, 623; doi.org/10.1002/9780470771662.ch15.
16. C.-Y. Yu, M. –H. Huang, Radicamines A and B: Synthesis and revision of the absolute configuration, Org. Lett. 2006, 8, 3021; doi.org/10.1021/ol0609210.
17. E. Marcantoni, M. Petrini, Comprehensive Organic Synthesis (Second Edition), 1.10. Lewis Acid Promoted Addition. Reaction of Organometallic Compounds, 2014, 1, 344; doi.org/10.1016/B978-0-08-097742-3.00113-0.
18. T. M. Chapman, S. Courtney, P. Hay, B. G. Davis, Highly diastereoselective additions to polyhydroxylated pyrrolidine cyclic imines: ready elaboration of aza-sugar scaffolds to create diverse carbohydrate processing enzyme probes, Chem. Eur. J. 2003, 9, 3397; doi.org/10.1002/chem.200304718.
19. B. G. Davis, M. A. T. Maughan, T. M. Chapman, R. Villard, S. Coutney, Novel cyclic sugar imines: carbohydrate mimics and easily elaborated scaffolds for aza-sugars, Org. Lett. 2002, 4, 103; doi.org/10.1021/ol0169700.
20. G. B. Evans, R. H. Furneaux, G. J. Gainsford, V. L. Schramm, P. C. Tyler, Synthesis of transition state analogue inhibitors for purine nucleoside phosphorylase and N-riboside hydrolase, Tetrahedron 2000, 56, 3053; doi.org/10.1016/S0040-4020(00)00194-0.
21. T. Arai, H. Abe, S. Aoyagi, C. Kibayashi, Total synthesis of (+)-cylindricine C, Tetrahedron Letters 2004, 45, 5921; doi.org/10.1016/j.letlet.2004.05.142.
22. N. D. Bartolo, J. A. Read, E. M. Valentin, K. A. Woerpel, Reactions of allylmagnesium reagents with carbonyl compounds and compounds with C=N double bonds: Their diastereoselectivities generally cannot be analyzed using the Felkin-Anh chelation control models, Chem. Rev. 2020, 120, 1513; doi: 10.1021/acs.chemrev.9b00414.
23. D. Seyferth, The Grignard reagents, Organometallics 2009, 28, 1598; doi.org/10.1021/om9000882.
24. R. Takahashi, A. Hu, P. Gao, Y. Gao, Y. Pang, T. Seo, J. Jiang, S. Maeda, H. Takaya, K. Kubota, H. Ito, Mechanochemical synthesis of magnesium based carbon nucleophiles in air and their use in organic synthesis, Nature Communications 2021, 12, 6691; doi.org/10.1038/s41467-021-26962-w.
25. H. H. Wasserman, M. Thyes, S. Wolff, V. Rusiecki, imine-epoxide rearrangements in the formation of substituted piperidines. A stereoselective synthesis of (+/-) solenopsin A, Tetrahedron Letters 1988, 29, 4973; doi.org/10.1016/50040-4039(00)80656-5.
26. H. H. Wasserman, V. Rusiecki, imine-epoxide rearrangements in the formation of substituted piperidines. A stereoselective synthesis of (+/-) solenopsin A, Tetrahedron Letters 1988, 29, 4977; doi.org/10.1016/50040-4039(00)80657-7.
27. H. H. Wasserman, K. Rodriques, R. Kucharezuk, The imine epoxide rearrangement in the formation of trans 2,6-disubstituted piperidines. A stereoselective synthesis of (+/-) teneraic acid, Tetrahedron Letters 1989, 30, 6077; doi.org/10.1016/S0040-4039(01)93859-6.
28. Y. Yamamoto, T. Komatsu, K. Maruyama, Imine-epoxide rearrangements in the formation of substituted piperidines. A stereoselective synthesis of (+/-) solenopsin A, J. Am. Chem. Soc. 1984, 106, 5031; doi.org/10.1021/ja00329a081.
29. S. Pikul, J. Jurczak, Stereochemical consequence of nucleophilic addition to 2,3-o-isopropylideneglyceraldehyde. High pressure approach versus the use of organomelatic reagents, Tetrahedron Letters 1985, 26, 4145; doi.org/10.1016/50040-4039(00)89315-6.
30. A. T. Balaban, M. Banciu, I. Pogany, Applications of physical methods in Organic Chemistry Ed. Stiintifica si Enciclopedica, Bucuresti 1983.
31. D. Durantel, S. Canouee-Durantel, N. Branza-Nichita, R. A. Dwek, N. Zitzmann, Effects of interferon, ribavirin, and iminosugar derivatives on cell persistently infected with noncytopathic bovine viral diarrhea virus, Antimicrob. Agents Chemother. 2004, 48, 497; doi.org/10.1128/AAC 482497-504.2004.
32. L. E. Dewald, C. Starr, T. Butters, A. Treston, H. L. Warfield, Iminosugars: A host targeted approach to combat flaviridae infections, Antiviral Research 2020, 184, 104881; Doi.org/10.1016/j.antiviral.2020.104881.
33. L. Tarko, A. Hartopeanu QSAR Study regarding the inhibitory activity of some iminosugars against α-glucosidase, Rev. Chim 2016, 67, 13.
34. B. L. Stocker, E. M. Dangerfield, A. L. Win-MasonChem, G. W. Haslett, M. S. M. Timmer, Recent development in the synthesis of pyrrolidine containing iminocyclitols, Eur. J. Org. Chem. 2010, 16, 15; DOI: 10.1002/ejoc.200901320.
35. H. Batra, R. M. Moriarty, R. Penmastra, V. Sharma, G. Stanciuc, J. P. Staszewski, S. M. Tuladhor, D. A. Walsh, S. Datta, S. Krishnaswamy, A concise, efficient and production-scale synthesis of a protected L-lyxonolactone derivatves: an important aldonolactone core, Org.Proc.Res.&Dev. 2006, 10, 484; doi: 10.1021/po050222n.