2023, Volume 9
2022, Volume 8
2021, Volume 7
2020, Volume 6
2019, Volume 5
2018, Volume 4
2017, Volume 3
2016, Volume 2
2015, Volume 1
1Inorganic and Analytical Chemistry Laboratory, Department of Chemistry, Faculty of Science and Technology, Cheikh Anta Diop University, Dakar, Senegal
2Institute for Molecules & Materials (IMM) Solid State Chemistry, Faculty of Science, Radboud University, Nijmegen, Netherlands
3Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
Two new organic/inorganic composite coordination polymers have been synthesised by the reaction of cadmium (II) iodide with 1,4-dioxane, [CdI2(C4H8O2)]n (1) and with N-(2,4-dichlorobenzylidene)ethanolamine, [Cd2I4(NH2CH2CH2OH)2]n (2). These complexes have been structurally characterised by X-ray diffraction analysis. Complex 1 crystallizes in the monoclinic space group P21/c with a = 8.2028 (3), b = 14.3556(5), c = 7.6594(3) Å, β = 100.513(1)°, V = 886.80(6) Å3 and Z = 4. Complex 2 crystallizes in the orthorhombic space group Pccn with a = 8.7369(6); b = 13.2514(9), c = 14.3794(11) Å, V = 1664.8(2) Å3 and Z = 8. The crystal structure analysis shows an octahedral environment around the cadmium atom in complex 1 and the crystal packing comprises of doubly iodo-bridged polymeric layers, where the two independent 1,4 dioxane ligands act as are bridging species through O atoms. The structure of 2 is an iodo bridged one-dimensional chain with the two independent Cd(II) ions alternating along the polymer. Here one Cd(II) ion is coordinated in a slightly distorted octahedral geometry by two chelating ethanolamine ligands via O, N donors and two iodo ligands. The other Cd(II) ion is tetrahedrally coordinated by four iodo ligands.
Cadmium (II), Crystal Structure, Tetrahedral and Octahedral Coordination
Aboubacar Diop, Tidiane Diop, Mouhamadou Abdoulaye Diallo, Paul Tinnemans, Ennio Zangrando, et al. (2022). Two New Iodo-Bridged Cadmium(II) Polymers with 1,4-dioxane and Ethanolamine Ligands: Synthesis and Crystal Structures. American Journal of Heterocyclic Chemistry, 8(2), 12-16. https://doi.org/10.11648/j.ajhc.20220802.11
Copyright © 2022 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. | Jian F. F., Zhao P. S., Wang Q. X., Li Y. Inorg. Chim. Acta 2006, 359, 5, 1473-1477. |
2. | Bogachev N. A., Starova G. L., Razzhivin A. V., Skripkin M. Y., Nikolskii A. B. Russ. J. Gen. Chem. 2018, 88, 1-6. |
3. | Zhang L., Wang J., Han F., Mo S., Long F., Gao Y. J. Mol. Struct., 2018, 1156, 450-456. |
4. | Cui S. F., Wen Q. M., Zhou C. H. Acta Crystallogr. 2012, E68, m889. |
5. | Karmakar R., Choudhury C. R., Hughes D. L., Mitra S. Inorg. Chim. Acta 2007, 360, 2631-2637. |
6. | Pryma O. V., Petrusenko S. R., Kokozay V. N., Shishkin O. V., Zhigalko M. V., Linert W., Z. Naturforsch. 2003, 58b, 1117-1123. |
7. | Dobrzycki L., Woźniak K. J. Mol. Struct., 2009, 921, 18-33. |
8. | Hakimi M., Mardani Z., Moeini K., Fernandes M. A. J. Coord. Chem., 2012, 65, 2221-2233. |
9. | Ciurtin D. M., Smith M. D., Loye H. C. Polyhedron, 2003, 22, 3043-3049. |
10. | Ndiolene A., Diop T., Boye M. S., Maris T., Diasse-Sarr A. Am. J. Heterocycl. Chem. 2020, 6, 30–35. |
11. | SAINT V8.38A. Bruker AXS Inc., Madison, Wisconsin, USA. |
12. | Krause L., Herbst-Irmer R., Sheldrick G. M., Stalke D. J. Appl. Cryst., 2015, 48, 3-10. |
13. | Sheldrick G. M. Acta Crystallogr. 2015, A71, 3–8. |
14. | Sheldrick G. M. Acta Crystallogr. 2015, C71, 3–8. |
15. | Dolomanov O. V., Bourhis L. J., Gildea R. J., Howard J. A. K., Puschmann H. J. Appl. Crystallogr. 2009, 42, 339–341. |