Research Article | | Peer-Reviewed

Solar-Assisted Green Synthesis, Molecular Docking, Antibacterial, and Cytotoxicity Studies of Symmetrical N, N’-Alkylidene Bisamides Bearing Lower E-Factors

Received: 27 January 2024    Accepted: 18 February 2024    Published: 13 March 2024
Views:       Downloads:
Abstract

N, N'-alkylidene bisamides show promise in biological and pharmaceutical uses. Advanced chemistry now explores cleaner and more environmentally friendly methods. One such method involves using concentrated solar radiation (CSR) to facilitate the green synthesis of N, N'-alkylidene bisamides. This approach simplifies the process by combining aldehydes and amides in a one-pot reaction. Its solvent-free nature sets it apart, aligning with environmentally friendly practices. Any regular catalyst aids the response, making it efficient. The simplicity continues with an easy filtration step to isolate the products. Notably, there's no need for column chromatography, making the purification process straightforward. In general, a mixture of aldehyde, aryl/alkylamide was taken in a round bottom flask. The reaction mass in RBF was then kept under the concentrated solar radiation (CSR) setup with continuous stirring on a magnetic stirrer. After few hours of stirring the precipitate was observed. After completion of the reaction, the precipitated product was washed with water and recrystallized from hot ethanol to afford pure product symmetrical N, N'-alkylidene bisamide. Dimethyl sulfoxide (DMSO) was used as a solvent to prepare a stock of derivatives. Luria Bertani broth (LB) used for the present study viz; Staphylococ-cus aureus MCC 2408, Escherichia coli MCC 2412, Pseudomonas aeruginosa MCC 2080 and Klebsiella pneumoniae MCC 2451 used to evaluate the antibacterial property of the derivatives. Indeed, this method offers an eco-friendly solution and showcases the potential of using renewable energy sources in chemical synthesis. It is a significant step towards sustainable practices in chemistry, particularly in producing complex organic compounds for biological and pharmaceutical purposes.

Published in American Journal of Heterocyclic Chemistry (Volume 10, Issue 1)
DOI 10.11648/j.ajhc.20241001.11
Page(s) 1-12
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Bisamides, Antimicrobial, Anti-Cancer, CSR, One-Pot Synthesis, Green Synthesis

References
[1] Thakral, S.; Singh, V. Recent Development on Importance of Heterocyclic Amides as Potential Bioactive Molecules: A Review. Curr. Bioact. Compd. 15 (2018) 316–336. https://doi.org/10.2174/1573407214666180614121140
[2] Serbian, I.; Hoenke, S.; Kraft, O.; Csuk, R. Ester and Amide Derivatives of Rhodamine B Exert Cytotoxic Effects on Different Human Tumor Cell Lines. Med. Chem. Res. 29 (2020) 1655–1661. https://doi.org/10.1007/S00044-020-02591-8/TABLES/2
[3] Wei, Q.; Wang, X.; Cheng, J. H.; Zeng, G.; Sun, D. W. Synthesis and Antimicrobial Activities of Novel Sorbic and Benzoic Acid Amide Derivatives. Food Chem. 268 (2018) 220–232. https://doi.org/10.1016/J.FOODCHEM.2018.06.071
[4] Huczyński, A.; Janczak, J.; Stefańska, J.; Antoszczak, M.; Brzezinski, B. Synthesis and Antimicrobial Activity of Amide Derivatives of Polyether Antibiotic—Salinomycin. Bioorg. Med. Chem. Lett. 22 (2012) 4697–4702. https://doi.org/10.1016/J.BMCL.2012.05.081
[5] Altintop, M. D.; Kaplancikli, Z. A.; Ozdemir, A.; Turan-Zitouni, G.; Temel, H. E.; Akalín, G. Synthesis and Anticholinesterase Activity and Cytotoxicity of Novel Amide Derivatives. Arch. Pharm. (Weinheim). 345 (2012) 112–116. https://doi.org/10.1002/ARDP.201100124
[6] Zhang, L.; Ma, Z.; Che, Y.; Li, N.; Protective Effect of a New Amide Compound from Pu-Erh Tea on Human Micro-Vascular Endothelial Cell against Cytotoxicity Induced by Hydrogen Peroxide. Fitoterapia, 82 (2011) 267-271. https://doi.org/10.1016/j.fitote.2010.10.009
[7] Goodman, M.; Shao, H. Peptidomimetic Building Blocks for Drug Discovery: An Overview. Pure Appl. Chem. 68 (1996) 1303–1308. https://doi.org/10.1351/PAC199668061303/HTML
[8] Wohl, R. A.; Davey, D. D.; Argentieri, T. M.; Jain, V. K.; Morgan, T. K.; Sullivan, M. E.; Wong, S. S.; Wiggins, J.; Reiser, H. J.; Marisca, A. J.; Devita, R. J.; Gomez, R. P.; Gomez, R. P. Rational Design of 4-[(Methylsulfonyl)Amino] Benzamides as Class III Antiarrhythmic Agents. J. Med. Chem. 30 (1987) 755–758. https://doi.org/10.1021/JM00388A001
[9] Nunami, K. ‐I; Yamazaki, T.; Goodman, M. Cyclic Retro–Inverso Dipeptides with Two Aromatic Side Chains. I. Synthesis. Biopolymers 31 (1991) 1503–1512. https://doi.org/10.1002/BIP.360311307
[10] Bode JW. Emerging methods in amide- and peptide-bond formation. Current Opinion in Drug Discovery & Development. 9 (2006) 765-775. PMID: 17117685.
[11] Shaterian, H.; Ghashang, M.; Mostafa F.; Silica Sulfuric Acid as an Efficient Catalyst for the Preparation of 2H-Indazolo Phthalazine-Triones. Applied Catalysis A: General 345) (2008) 128-133. https://doi.org/10.1016/j.apcata.2008.04.032
[12] Newman, D. J. Molecular Biology in Medicinal Chemistry, Volume 21 Edited by T. Dingermann (Johann Wolfgang Goethe-University), D. Steinhilber (Johann Wolfgang Goethe-University), and G. Folkers (ETH Zürich). Wiley-VCH, Weinheim. 2004. Xxi + 413 Pp. 18 × 24 Cm. $175.00. J. Nat. Prod. 68 (2005) 309–309. https://doi.org/10.1021/np0307800
[13] Wan, J. P.; Chai, Y. F.; Wu, J. M.; Pan, Y. J. N,N′-(Phenylmethylene)Diacetamide Analogues as Economical and Efficient Ligands in Copper-Catalyzed Arylation of Aromatic Nitrogen-Containing Heterocycles. Synlett 19 (2008) 3068–3072. https://doi.org/10.1055/S-0028-1087350
[14] Nayak, P.; Barik, B.; Achary, L.; Aniket K.; Priyabrat D.; Gold nanoparticles deposited on MnO2 nanorods modified graphene oxide composite: A potential ternary Nano catalyst for efficient synthesis of betti bases and bisamides. Molecular Catalysis 474 (2019) 110415. https://doi.org/10.1016/j.mcat.2019.110415
[15] Nandi, R.; Mandal, P. K.; Kayet, A.; Bhattachariya, T.; Ghosh, S.; Maiti, D. K. Benzimidates as Gem-Diamidation and Amidoindolyzation Cascade Synthons with a Hydrated NiII Catalyst. Org. Lett. 22 (2020) 3474–3478. https://doi.org/10.1021/acs.orglett.0c00928
[16] Kumar, P.; Gupta, P.; Chandan S,; Surface Modified Novel Magnetically Tuned Halloysite Functionalized Sulfonic Acid: Synthesis, Characterization and Catalytic Activity. Catal. Sci. Technol. 11 (2021) 3775-3786. https://doi.org/10.1039/D1CY00285F
[17] Rayavarapu, S.; Kadiri, S.; Gajula, M.; Mangarao N.; Ramu T.; Nagendra S. Y.; Siddaiah V.; Synthesis of Putrescine Bisamides as Antimicrobial and Anti-Inflammatory Agents. Med. Chem., 4 (2014) 367-372. https://doi.org/10.4172/2161-0444.1000167
[18] Panja, S.; Ghosh, S.; Ghosh K.; Pyridine/Pyridinium Symmetrical Bisamides as Functional Materials: Aggregation, Selective Sensing and Drug Release. New J. Chem. 42 (2018) 6488-6497. https://doi.org/10.1039/C7NJ03931J.
[19] Jung, K. H.; Kim, H. K.; Park, J. A.; Nam, K. S.; Lee, G. H.; Chang, Y.; Kim, T. J. Gd Complexes of DO3A-(Biphenyl-2,2′-Bisamides) Conjugates as MRI Blood-Pool Contrast Agents. ACS Med. Chem. Lett. 3 (2012) 1003–1007. https://doi.org/10.1021/ML300223B
[20] Xu, R.; Cai, Z.; Lan, G.; Lin, W. Metal-Organic Layers Efficiently Catalyze Photoinduced Polymerization under Visible Light. Inorg. Chem. 57 (2018) 10489–10493. https://doi.org/10.1021/ACS.INORGCHEM.8B01637
[21] Debroye, E.; Eliseeva, S. V.; Laurent, S.; Vander Elst, L.; Petoud, S.; Muller, R. N.; Parac-Vogt, T. N. Lanthanide (III) Complexes of Diethylenetriaminepentaacetic Acid (DTPA)-Bisamide Derivatives as Potential Agents for Bimodal (Optical/Magnetic Resonance) Imaging. Eur. J. Inorg. Chem. 14 (2013) 2629–2639. https://doi.org/10.1002/EJIC.201300196
[22] Fu, B.; Chen, L.; Huang, H.; Qu, P.; Wei, Z. Impacts of Crop Residues on Soil Health: A Review. Environ. Pollut. Bioavailab. 33 (2021) 164–173. https://doi.org/10.1080/26395940.2021.1948354
[23] Henderson, K.; William J. K.; Magnesium Bisamides as Reagents in Synthesis. Chem. Eur. J. 7 (2001) 3430-3437. https://doi.org/10.1002/1521-3765(20010817)7:16<3430::AID-CHEM3430 > 3.0.CO;2-1
[24] Zhou, C.; Xu J.; Application of Chiral Bisamide Ligands in Asymmetric Catalytic Syntheses. Current Organic Synthesis 10 (2013) 394-410.
[25] Nobre, S.; Cavalheiro, V.; Leonardo S. D.; Synthesis of Brominated Bisamides and Their Application to the Suzuki Coupling. 1171 (2018) 594-599. https://doi.org/10.1016/j.molstruc.2018.05.103
[26] Pyrzehi-Bakhshani R, Hassanabadi A.; Ultrasound-Promoted Synthesis of Symmetrical Bisamides by Reaction between Aromatic Aldehydes and Amides Catalysed by p-Toluenesulfonic Acid. Journal of Chemical Research. 40 (2016) 35-37. https://doi.org/10.3184/174751916X14495888748571
[27] Harichandran, G.; David Amalraj, S.; Shanmugam, P. An Efficient Synthesis of Symmetrical N, N′-Alkylidene Bisamides Catalyzed by Phosphotungstic Acid. Indian J. Chem. 50 (2011) 77–82.
[28] Anary-Abbasinejad, M.; P-Toluene Sulfonic Acid-Catalysed Microwave Synthesis of Symmetrical Bisamides by Reaction between Aromatic Aldehydes and Amides. journals.sagepub.com 8 (2010) 478–480. https://doi.org/10.3184/030823410X12812905400188
[29] Kamaraj, C.; Bagavan, A.; Elango, G.; A. Abduz Zahir, Rajakumar G.; Marimuthu S.; Santhoshkumar T.; A. Abdul R.; Larvicidal Activity of Medicinal Plant Extracts against Anopheles Subpictus & Culex Tritaeniorhynchus. Indian J Med Res. 134 (2011) 101–106.
[30] Selvakumar, K.; Shanmugaprabha, T.; Kumaresan, M.; Sami, P. One-Pot Multi-Component Synthesis of N, N′-Alkylidene Bisamides and Imidazoles Using Heteropoly-11-Tungsto-1-Vanadophosphoric Acid Supported on Natural Clay as Catalyst: A Green Approach. Synth. Commun. 47 (2017) 2115–2126. https://doi.org/10.1080/00397911.2017.1366524
[31] Zhang, Y.; Zhong, Z.; Han, Y.; Ruirui H.; Xu C.; Convenient Synthesis of Bisamides with BF3 Etherate as Catalyst. Tetrahedron, 69 (2013) 11080-11083. https://doi.org/10.1016/j.tet.2013.11.017
[32] Shafiee, R. M.; Mohammad, One-Pot Preparation of N, N’-Alkylidene Bisamide Derivatives Catalyzed by Silica Supported Magnesium Chloride (SiO2-MgCl2). Letters in Organic Chemistry, 8 (2011) 562-567. https://doi.org/10.2174/157017811797249344
[33] Shen, X.; Shen, Y.; Han, Y.; Quiyang, L.; Synthesis of Symmetrical N, N′-Alkylidene Bisamides Using Zinc Chloride as a Lewis Acid Catalyst. Advanced Materials Research (Volume 441), 2012, 421-425. https://doi.org/10.4028/www.scientific.net/AMR.441.421
[34] Mirjalili, B.; Mohammad A. M.; Tandem Synthesis of N, N′-Alkylidenebisamides Promoted by Nano-SnCl4.SiO2. Springer 125 (2013) 1481–1486. https://doi.org/10.1007/s12039-013-0519-2
[35] Harichandrana, G.; DavidAmalraja, S.; Shanmugamb, P. Boric Acid Catalyzed Efficient Synthesis of Symmetrical N, N’-Alkylidene Bisamides. J. Iran. Chem. Soc. 8 (2011) 298–305. https://doi.org/10.1007/BF03246228
[36] Anary-Abbasinejad, M.; Mosslemin, M. H.; Hassanabadi, A.; Safa, S. T. P-Toluene Sulfonic Acid-Catalyzed, Solvent-Free Synthesis of Symmetrical Bisamides by Reaction between Aldehydes and Amides. Synth. Commun. 40 (2010) 2209–2214. https://doi.org/10.1080/00397910903219617
[37] Tajbakhsh, M.; Hosseinzadeh, R.; Alinezhad, H.; Rezaee, P. Efficient Synthesis of Symmetrical Bisamides from Aldehydes and Amides Catalyzed by Silica-Bonded S-Sulfonic Acid Nanoparticles. Synth. Commun. 43 (2013) 2370–2379. https://doi.org/10.1080/00397911.2012.709573
[38] Herrera Fernández, A.; Martínez Alvarez, R.; Morales Abajo, T. Improved Synthesis of Symmetrical N, N’-Alkylidene Bisamides. Synthesis (Stuttg). 11 (1996) 1299–1301. https://doi.org/10.1055/S-1996-4385
[39] Selvam, N. P.; Saranya, S.; Perumal, P. T. A Convenient and Efficient Protocol for the Synthesis of Symmetrical N, N’-Alkylidine Bisamides by Sulfamic Acid under Solvent-Free Conditions. Can. J. Chem. 86 (2008) 32–38. https://doi.org/10.1139/V07-134
[40] Jamshidi, A.; Mohammadi Zonoz, F.; Maleki, B. Synthesis and Characterization of a New Nano Ionic Liquid Based on Dawson-Type Polyoxometalate and Its Application in the Synthesis of Symmetrical N, N′-Alkylidene Bisamides. Polycycl. Aromat. Compd. 40 (2020) 875–888. https://doi.org/10.1080/10406638.2018.1504094
[41] Gadilohar, B.; Haribhau S. K.; Ganapati S. S.; Choline Peroxydisulfate Oxidizing Bio-TSIL: Triple Role Player in the One-Pot Synthesis of Betti Bases and Gem-Bisamides from Aryl Alcohols under Solvent-Free conditions. New J. Chem. 39 (2015) 4647-4657. https://doi.org/10.1039/C4NJ02295E
[42] Mouradzadegun, A.; Elahi, S.; Abadast, F. Synthesis of a 3D-Network Polymer Supported Bronsted Acid Ionic Liquid Based on Calix[4]resorcinarene via Two Post-Functionalization Steps: A Highly Efficient and Recyclable Acid Catalyst for the Preparation of Symmetrical Bisamides. RSC Adv. 4 (2014) 31239–31248. https://doi.org/10.1039/C4RA03463E
[43] Naeim-Fallahiyeh, S.; Rostami, E.; Golchaman, H.; Kaman-Torki, S. Graphene Oxide Anchored with Sulfonic Acid-Functionalized Glycerin: Production, Characterization and Catalytic Performance for the Synthesis of N, N′-Alkylidene Bisamides. Res. Chem. Intermed. 46 (2020) 4141–4153. https://doi.org/10.1007/S11164-020-04197-6
[44] Wang, Q.; Sun, L.; Jiang, Y.; Li C.; Synthesis of Methylenebisamides Using CC-or DCMT-Activated DMSO. Beilstein J. Org. Chem. 4 (2008) 51. https://doi.org/10.3762/bjoc.4.51
[45] Bhukta, S.; Chatterjee, R., Dandela, R.; Metal-free, 2-MeTHF mediated C (sp)–H functionalization of alkynes with anilines to access diaryl 1, 2-diketones bearing lower E-factors. Green Chemistry, 25 (2023), 3034-3039. https://doi.org/10.1039/D3GC00267E
[46] Senthilraja, P.; Kathiresan, K; In Vitro Cytotoxicity MTT Assay in Vero, HepG2 and MCF-7 Cell Lines Study of Marine Yeast. Journal of Applied Pharmaceutical Science 5 (2015) 080-084. https://doi.org/10.7324/JAPS.2015.50313
[47] Anza, M; Endale, M; Cardona, L; Cortes, D; Cabedo, N; Eswaramoorthy, R; Abarca, B; Domingo-Ortí, I; Palomino-Schätzlein, M; Cytotoxicity, Molecular Docking, ADMET and DFT Analysis of Alkaloids from the Roots and Fruits of Vepris dainelli; Current Bioactive Compounds, 18 (2022) 41-53. https://doi.org/10.2174/1573407218666220117100141
[48] Darwish, N.; Saleh, A.; Hemdan, S.; Abdallah, A. Molecular Docking and In-Vitro Evaluation of Apoptotic Effect of Novel Synthetic Organocopper Derivative in Human Breast Cancer Cell Line as Anticancer Agent. Research square, 2022 https://doi.org/10.21203/rs.3.rs-1863059/v1
[49] Dickel, D.; Inovação, G. de M.-R. R. de A. e; Organizational Performance Evaluation in Intangible Criteria: A Model Based on Knowledge Management and Innovation Management. Elsevier. 13 (2016) 211-220. https://doi.org/10.1016/j.rai.2016.06.005
[50] Albini, A.; Chemistry, M. F.-G.; 2004, Green Chemistry and Photochemistry Were Born at the Same Time. pubs.rsc.org. Green Chem. 6 (2004) 1-6. https://doi.org/10.1039/B309592D
[51] Oelgemöller, M.; Jung, C.; Ortner, J.; Mattay, J.; Zimmermann, E. Green Photochemistry: Solar Photooxygenations with Medium Concentrated Sunlight. Green Chem. 7 (2005) 35–38. https://doi.org/10.1039/B414230F
[52] Karl, F.-S.; Solar Chemistry: Classification, Criteria, and Identification of R & D Deficits. Solar Energy Materials, 24 (1991) 370-385. https://doi.org/10.1016/0165-1633(91)90076-W
[53] Jadhav, N.; Gondhalekar, K.; Doltade, S.; Energy, D. P.-S.; Concentrated Solar Radiation Aided Green Approach towards the Synthesis of Fe3O4 Nanoparticles by Photochemical Oxidation of FeCl2. Solar Energy, 171 (2018) 769-773. https://doi.org/10.1016/j.solener.2018.07.027.
[54] Zappimbulso, N.; Capozzi, M. A. M.; Porcheddu, A.; Farinola, G. M.; Punzi, A.; Solvent‐free Reactions for the Synthesis of Indolenine‐based Squaraines and Croconaines: Comparison of Thermal Heating, Mechanochemical Milling. ChemSusChem 14 (2021) 1363-1369. https://doi.org/10.1002/cssc.202002763.
[55] Amin, S.; Barnes, A.; Buckner, C.; Jones, J.; Monroe, M.; Nurmomade, L.; Pinto, T.; Starkey, S.; Agee, B. M.; Crouse, D. J.; Swartling, D. J. Diels-Alder Reaction Using a Solar Irradiation Heat Source Designed for Undergraduate Organic Chemistry Laboratories. J. Chem. Educ. 92 (2015) 767–770. https://doi.org/10.1021/ED500850C
[56] Oelgemöller, M.; Healy, N.; Oliveira, L. de; Jung, C.; Matty, J.; Green Photochemistry: Solar-Chemical Synthesis of Juglone with Medium Concentrated Sunlight. Green Chem. 8 (2006) 831-834. https://doi.org/10.1039/B605906F
[57] Gadkari, Y.; Hatvate, N.; and, V. T.-S. C.; 2021, Solar Energy as a Renewable Energy Source for Preparative-Scale as Well as Solvent and Catalyst-Free Hantzsch Reaction. Sustainable Chemistry and Pharmacy, 21 (2021) 100444. https://doi.org/10.1016/j.scp.2021.100444
[58] Gadkari, Y.; Hatvate, N.; Takale, B.; Telvekar, V.; Concentrated Solar Radiation as a Renewable Heat Source for a Preparative-Scale and Solvent-Free Biginelli Reaction. New J. Chem. 44 (2020) 8167-8170. https://doi.org/10.1039/D0NJ01351J
[59] Jadhav, N.; Jadhav, N. L.; Pandit, A. B.; Pinjari, D. V.; Green Approach for the Synthesis of Chalcone (3-(4-Fluorophenyl)-1-(4-Methoxyphenyl) Prop-2-En-1-One) Using Concentrated Solar Radiation. Solar Energy, 147 (2017) 232-239. https://doi.org/10.1016/j.solener.2017.03.047
[60] Malek H..; Techno-Economic Assessment Model of Screening Step of Agricultural Wastes Recycling to Animal Feed Project. Cent Asian J Environ Sci Technol Innov 1 (2021) 1-11. 10.22034/CAJESTI.2021.01.01.
[61] Harsh, S.; Yusuf, M.; Sharma, R.; Kumar, Y.; Arkivoc, R. K.-; 2018, Concentrated Solar Radiation Promoted Unconventional Greener Approach: Solvent-Free Benign Synthesis of Functionalized Benzimidazoles. Arkivoc vii (2018) 119-130 https://doi.org/10.24820/ark.5550190.p010.687
[62] Gadkari, Y. U.; Jadhav, N. L.; Hatvate, N. T.; Telvekar, V. N. Concentrated Solar Radiation Aided Green Approach for Preparative Scale and Solvent-Free Synthesis of 3-Methyl-4-(Hetero) Arylmethylene Isoxazole-5(4H)-Ones. ChemistrySelect 5 (2020) 12320–12323. https://doi.org/10.1002/SLCT.202003348
[63] Patil, A.; Lanke, S.; Deshmukh, K.; Aniruddha B. P.; Bhalchandra M. B..; Solar Energy Assisted Palladium Nanoparticles Synthesis in Aqueous Medium. Materials Letters 79 (2012) 1-3. https://doi.org/10.1016/j.matlet.2012.03.069
[64] Sastry, S. K. C.; Jadhav, N. L.; Doltade, S. B.; Pinjari, D. V. Effect of Concentrated Solar Radiation on the Morphology of the Silver Nanoparticles and Its Antibacterial Activity. Indian Chem. Eng. 61 (2019) 374–386. https://doi.org/10.1080/00194506.2019.1579674
[65] Jadhav, N. L.; Pandit, A. B.; Pinjari, D. V.; Green approach for the synthesis of chalcone (3-(4-fluorophenyl)-1-(4-methoxyphenyl) prop-2-en-1-one) using concentrated solar radiation. Solar Energy, 147 (2017) 232-239. https://doi.org/10.1016/j.solener.2017.03.047
[66] Liu, J.; Miao, H.; Research, S. L.-A. M.; 2012, Non-Aqueous Dyeing of Reactive Dyes in D5. Advanced Materials Research 441 (2012) 138-144. https://doi.org/10.4028/www.scientific.net/AMR.441.138
[67] Jadhav, N.; Pandit, A.; Energy, D. P.-S.; Green Approach for the Synthesis of Chalcone (3-(4-Fluorophenyl)-1-(4-Methoxyphenyl) Prop-2-En-1-One) Using Concentrated Solar Radiation. Solar Energy, 147 (2017) 232-239. https://doi.org/10.1016/j.solener.2017.03.047
[68] Ma, Q.; Ding, W.; Chen, Z.; Ma, Z. Bisamides and Rhamnosides from Mangrove Actinomycete Streptomyces Sp. SZ-A15. Nat. Prod. Res. 32 (2018) 761–766. https://doi.org/10.1080/14786419.2017.1315578
[69] Golub, T.; Dou, G. Y.; Zeng, C. C.; Becker, J. Y. One-Pot Anodic Conversion of Symmetrical Bisamides of Ethylene Diamine to Unsymmetrical Gem-Bisamides of Methylene Diamine. Org. Lett. 21 (2019) 7961–7964. https://doi.org/10.1021/ACS.ORGLETT.9B02917
[70] Florento, L.; Matias, R.; Tuaño, E.; Katherine S.; Frederick dela C.; and Alexander T.; Comparison of Cytotoxic Activity of Anticancer Drugs against Various Human Tumor Cell Lines Using in Vitro Cell-Based Approach. Int J Biomed Sci. 8 (2012) 76–80.
[71] Yazıcı, A.; Marinelli, L.; Yazici, A.; Cacciatore, I.; Emsen, B.; Eusepi, P.; Di Biase, G.; Stefano, A. Di; Mardinoğlu, A.; Türkez, H. Potential Anticancer Effect of Carvacrol Codrugs on Human Glioblastoma Cells. ingentaconnect.com 18 (2021) 350-356. https://doi.org/10.2174/1567201817666201027123424
[72] Gu, Q.; Kumar, A.; Bray, S.; Creason, A.; Khanteymoori, A.; Jalili, V.; Grüning, B.; Goecks, J. Galaxy-ML: An Accessible, Reproducible, and Scalable Machine Learning Toolkit for Biomedicine. PLoS Comput. Biol. 17 (2021) e1009014 https://doi.org/10.1371/JOURNAL.PCBI.1009014
[73] Morris, G. M.; Huey, R.; Lindstrom, W., et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30 (2009) 2785-2791. https://doi.org/10.1002/jcc.21256
[74] Morris, G. M.; Goodsell, D. S.; Halliday, R. S., et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19 (1998) 1639-1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10 > 3.0.CO;2-B
Cite This Article
  • APA Style

    Kamble, O. S., Chatterjee, R., Gad, S., Kansara, S., Ayakar, S., et al. (2024). Solar-Assisted Green Synthesis, Molecular Docking, Antibacterial, and Cytotoxicity Studies of Symmetrical N, N’-Alkylidene Bisamides Bearing Lower E-Factors. American Journal of Heterocyclic Chemistry, 10(1), 1-12. https://doi.org/10.11648/j.ajhc.20241001.11

    Copy | Download

    ACS Style

    Kamble, O. S.; Chatterjee, R.; Gad, S.; Kansara, S.; Ayakar, S., et al. Solar-Assisted Green Synthesis, Molecular Docking, Antibacterial, and Cytotoxicity Studies of Symmetrical N, N’-Alkylidene Bisamides Bearing Lower E-Factors. Am. J. Heterocycl. Chem. 2024, 10(1), 1-12. doi: 10.11648/j.ajhc.20241001.11

    Copy | Download

    AMA Style

    Kamble OS, Chatterjee R, Gad S, Kansara S, Ayakar S, et al. Solar-Assisted Green Synthesis, Molecular Docking, Antibacterial, and Cytotoxicity Studies of Symmetrical N, N’-Alkylidene Bisamides Bearing Lower E-Factors. Am J Heterocycl Chem. 2024;10(1):1-12. doi: 10.11648/j.ajhc.20241001.11

    Copy | Download

  • @article{10.11648/j.ajhc.20241001.11,
      author = {Omkar Sharad Kamble and Rana Chatterjee and Shubhada Gad and Samarth Kansara and Sonal Ayakar and Amit Kumar Pandey and Rambabu Dandela},
      title = {Solar-Assisted Green Synthesis, Molecular Docking, Antibacterial, and Cytotoxicity Studies of Symmetrical N, N’-Alkylidene Bisamides Bearing Lower E-Factors},
      journal = {American Journal of Heterocyclic Chemistry},
      volume = {10},
      number = {1},
      pages = {1-12},
      doi = {10.11648/j.ajhc.20241001.11},
      url = {https://doi.org/10.11648/j.ajhc.20241001.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajhc.20241001.11},
      abstract = {N, N'-alkylidene bisamides show promise in biological and pharmaceutical uses. Advanced chemistry now explores cleaner and more environmentally friendly methods. One such method involves using concentrated solar radiation (CSR) to facilitate the green synthesis of N, N'-alkylidene bisamides. This approach simplifies the process by combining aldehydes and amides in a one-pot reaction. Its solvent-free nature sets it apart, aligning with environmentally friendly practices. Any regular catalyst aids the response, making it efficient. The simplicity continues with an easy filtration step to isolate the products. Notably, there's no need for column chromatography, making the purification process straightforward. In general, a mixture of aldehyde, aryl/alkylamide was taken in a round bottom flask. The reaction mass in RBF was then kept under the concentrated solar radiation (CSR) setup with continuous stirring on a magnetic stirrer. After few hours of stirring the precipitate was observed. After completion of the reaction, the precipitated product was washed with water and recrystallized from hot ethanol to afford pure product symmetrical N, N'-alkylidene bisamide. Dimethyl sulfoxide (DMSO) was used as a solvent to prepare a stock of derivatives. Luria Bertani broth (LB) used for the present study viz; Staphylococ-cus aureus MCC 2408, Escherichia coli MCC 2412, Pseudomonas aeruginosa MCC 2080 and Klebsiella pneumoniae MCC 2451 used to evaluate the antibacterial property of the derivatives. Indeed, this method offers an eco-friendly solution and showcases the potential of using renewable energy sources in chemical synthesis. It is a significant step towards sustainable practices in chemistry, particularly in producing complex organic compounds for biological and pharmaceutical purposes. 
    },
     year = {2024}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Solar-Assisted Green Synthesis, Molecular Docking, Antibacterial, and Cytotoxicity Studies of Symmetrical N, N’-Alkylidene Bisamides Bearing Lower E-Factors
    AU  - Omkar Sharad Kamble
    AU  - Rana Chatterjee
    AU  - Shubhada Gad
    AU  - Samarth Kansara
    AU  - Sonal Ayakar
    AU  - Amit Kumar Pandey
    AU  - Rambabu Dandela
    Y1  - 2024/03/13
    PY  - 2024
    N1  - https://doi.org/10.11648/j.ajhc.20241001.11
    DO  - 10.11648/j.ajhc.20241001.11
    T2  - American Journal of Heterocyclic Chemistry
    JF  - American Journal of Heterocyclic Chemistry
    JO  - American Journal of Heterocyclic Chemistry
    SP  - 1
    EP  - 12
    PB  - Science Publishing Group
    SN  - 2575-5722
    UR  - https://doi.org/10.11648/j.ajhc.20241001.11
    AB  - N, N'-alkylidene bisamides show promise in biological and pharmaceutical uses. Advanced chemistry now explores cleaner and more environmentally friendly methods. One such method involves using concentrated solar radiation (CSR) to facilitate the green synthesis of N, N'-alkylidene bisamides. This approach simplifies the process by combining aldehydes and amides in a one-pot reaction. Its solvent-free nature sets it apart, aligning with environmentally friendly practices. Any regular catalyst aids the response, making it efficient. The simplicity continues with an easy filtration step to isolate the products. Notably, there's no need for column chromatography, making the purification process straightforward. In general, a mixture of aldehyde, aryl/alkylamide was taken in a round bottom flask. The reaction mass in RBF was then kept under the concentrated solar radiation (CSR) setup with continuous stirring on a magnetic stirrer. After few hours of stirring the precipitate was observed. After completion of the reaction, the precipitated product was washed with water and recrystallized from hot ethanol to afford pure product symmetrical N, N'-alkylidene bisamide. Dimethyl sulfoxide (DMSO) was used as a solvent to prepare a stock of derivatives. Luria Bertani broth (LB) used for the present study viz; Staphylococ-cus aureus MCC 2408, Escherichia coli MCC 2412, Pseudomonas aeruginosa MCC 2080 and Klebsiella pneumoniae MCC 2451 used to evaluate the antibacterial property of the derivatives. Indeed, this method offers an eco-friendly solution and showcases the potential of using renewable energy sources in chemical synthesis. It is a significant step towards sustainable practices in chemistry, particularly in producing complex organic compounds for biological and pharmaceutical purposes. 
    
    VL  - 10
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, Bhubaneswar, India

  • Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, Bhubaneswar, India

  • Department of Biotechnology, Institute of Chemical Technology-Indian Oil Odisha Campus, Bhubaneswar, India

  • Amity Institute of Biotechnology (AIB), Amity University, Gurgaon, India

  • Department of Biotechnology, Institute of Chemical Technology-Indian Oil Odisha Campus, Bhubaneswar, India

  • Amity Institute of Biotechnology (AIB), Amity University, Gurgaon, India

  • Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, Bhubaneswar, India

  • Sections