The naphthoquinone-fused N-heterocycles are found in natural products and are important candidates in medicinal chemistry. The 1, 3-C, N-binucleophilic property of the 2-aminonaphthoquinone provides access for the synthesis of naphthoquinone-fused N-heterocycles. In recent years this property of 2-aminonaphthoquinone has been acknowledged greatly by the synthetic community for construction of variably dubstituted naphthoquinone-fused N-heterocycles. This review summarizes the important findings in this area during 2019-2024. Also the review highlights the gap and future perspective of the approach.
Published in | American Journal of Heterocyclic Chemistry (Volume 10, Issue 2) |
DOI | 10.11648/j.ajhc.20251002.11 |
Page(s) | 26-40 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Aminonaphthoquinone, Fused Pyrrole, Fused Dihydropyridine, Multicomponent Reactions, 1, 3-C, N Binucleophile
MCR | Multicomponent Reaction |
DMSO | Dimethylsulfoxide |
DMF | N, N-Dimethylformamide |
DCE | 1, 2-dichloroethane |
FDA | Food and Drug Administration |
HIV | Human Immunodeficiency Virus |
HFIP | 1, 1, 1, 3, 3, 3-hexafluoroisopropanol |
NQ | Naphthoquinone |
PTSA | para-Toluenesulfonic Acid |
PEG | Polyethylene Glycol |
[1] | Dhameliya, T. M.; Donga, H. A.; Vaghela, P. V.; Panchal, B. G.; Sureja, D. K.; Bodiwala, K. B.; Chhabria, M. T. A decennary update on applications of metal nanoparticles (MNPs) in the synthesis of nitrogen- and oxygen-containing heterocyclic scaffolds. RSC Adv. 10 (2020) 32740-32820. |
[2] | Acharya, S. S.; Guin, B. K.; Parida, B. B. One-Pot Multicomponent Synthesis of Fully Substituted 1, 3-Thiazoles Appended with Naturally Occurring Lawsone. J. Org. Chem. 90 (2025) 2717–2727. |
[3] | Boruah, D. J.; Borkotoky, L.; Newar, U. D.; Maurya, R. A.; Yuvraj, P. Transition-Metal-Free Synthesis of N-Heterocyclic Compounds via Multi-Component Reactions. Asian J. Org. Chem. 12 (2023) e202300297. |
[4] | Acharya, S. S.; Rout, P. R.; Sutar, R.; Pradhan C.; Parida, B. B. Transition Metal-Catalyzed Directing Group-Assisted Site-Selective Di-ortho C−H Functionalizations via Double C−H Activation. (2025) |
[5] | Salehian, F.; Nadri, H.; Jalili-Baleh, L.; Youseftabar-Miri, L.; Bukhari, S. N. A.; Foroumadi, A.; Kucukkilinc, T. T.; Sharifzadeh, M.; Khoobi, M. A review: Biologically active 3, 4-heterocycle-fused coumarins. Eur. J. Med. Chem. 212 (2021) 113034. |
[6] | Pathania, S.; Narang, R. K.; Rawal, R. K. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur. J. Med. Chem. 180 (2019) 486-508. |
[7] | Pal, C. K.; Jena, A. K. Ce-catalyzed regioselective synthesis of pyrazoles from 1, 2-diols via tandem oxidation and C–C/C–N bond formation. Org. Biomol. Chem. 21 (2023) 59-64. |
[8] | Singh, V.; Mishra, B. K.; Kumar, D.; Tiwari, B. Construction of Highly Functionalized C4-Oxyacylated and Aminated Pyrazolines. Org. Lett. 25 (2023) 7089–7094. |
[9] | Nguyen, T. B. Recent Advances in the Synthesis of Heterocycles via Reactions Involving Elemental Sulfur. Adv. Synth. Catal. 362 (2020) 3448-3484. |
[10] | Chandrasekhar, S.; Tiwari, B.; Parida, B. B.; Reddy C. R. Chiral pyrrolidine–triazole conjugate catalyst for asymmetric Michael and Aldol reactions. Tetrahedron: Asymmetry 19 (2008) 495-499. |
[11] | Acharya, S. S.; Patra, S.; Maharana, R.; Dash, M.; Barad, L. M.; Parida, B. B. Recent advances in spirocyclization of maleimides via transition-metal catalyzed C–H activation. Org. Biomol. Chem. 22 (2024) 2916-2947. |
[12] | Kumar, G.; Saroha, B.; Kumar, R.; Kumari, M.; Kumar, S. Recent Advances in Synthesis and Biological Assessment of Quinoline-Oxygen Heterocycle Hybrids. ChemistrySelect 6 (2021) 5148-5165. |
[13] | Acharya, S. S.; Patra, S.; Barad, L. M.; Roul, A.; Parida, B. B. Recent advances in iodine–DMSO mediated C (sp3)–H functionalization of methyl-azaarenes via Kornblum oxidation. New. J. Chem. 2024, 48, 7614-7638. |
[14] | Kumari, V.; Acharya, S. S.; Mondal, N.; Choudhury, L. H. Maleimide-Dependent Rh (III)-Catalyzed Site-Selective Mono and Dual C–H Functionalization of 2-Arylbenzo [d] thiazole and Oxazole Derivatives. J. Org. Chem. 89 (2024) 18003–18018. |
[15] | Acharya, S. S.; Parida, B. B. Synthetic routes to access dicarbonylated aryls and heteroaryls. Org. Biomol. Chem. 22 (2024) 8209-8248. |
[16] | Chandrasekhar, S.; Parida, B. B.; Rambabu, C. Stereoflexible total synthesis of (−)-epiquinamide. Tetrahedron Lett. 50 (2009) 3294-3295. |
[17] | Chandrasekhar, S.; Parida, B. B.; Rambabu, C. Total Synthesis of Hyacinthacine A1, a Glycosidase Inhibitor. J. Org. Chem. 73 (2008) 7826–7828. |
[18] | Walsh, C. T. Nature loves nitrogen heterocycles. Tetrahedron Lett. 56 (2015) 3075-3081. |
[19] | Kerru, N.; Gummidi, L.; Maddila, S.; Gangu. K. M.; Jonnalagadda, S. B. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules 25 (2020) 1909. |
[20] | Acharya, S. S.; Bhaumick, P.; Kumar, R.; Choudhury, L. H. Iodine-Catalyzed Multicomponent Synthesis of Highly Fluorescent Pyrimidine-Linked Imidazopyridines. ACS Omega 7 (2022) 18660–18670. |
[21] | Sharma, S.; Kumar, D.; Singh, G.; Monga, V.; Kumar, B. Recent advancements in the development of heterocyclic anti-inflammatory agents. Eur. J. Med. Chem. 200 (2020) 112438. |
[22] | Bhaumick, P.; Kumar, R.; Acharya, S. S.; Parvin, T.; Choudhury, L. H. Multicomponent Synthesis of Fluorescent Thiazole–Indole Hybrids and Thiazole-Based Novel Polymers. J. Org. Chem. 87 (2022) 11399–11413. |
[23] | Parammal, A.; Kumar, M.; Singh, S.; Xavier, J. S.; Subramanian, P. The Total Synthesis of Aspidofractinine and Related Alkaloids. Eur. J. Org. Chem. 27 (2024) e202300960. |
[24] | Grover, G.; Nath, R.; Bhatia, R.; Akhtar, M. J. Synthetic and therapeutic perspectives of nitrogen containing heterocycles as anti-convulsants. Bioorg. Med. Chem. 28 (2020) 115585. |
[25] | Jindal, G.; Vashisht, P.; Kaur, N. Benzimidazole appended optical sensors for ionic species: Compilation of literature reports from 2017 to 2022. Results Chem. 4 (2022) 100551. |
[26] | Cheng, Z.; Bai, Z.; Dai, Y.; Luo, L.; Liu, X. Rapid determination of binding parameters of chitin binding domains using chitin-coated quartz crystal microbalance sensor chips. Analyst 143 (2018) 5255-5263. |
[27] | Lindh, L.; Gordivska, O.; Persson, S.; Michaels, H.; Fan, H.; Chabera, P.; Rosemann, N. W.; Gupta, A. K.; Benesperi, I.; Uhlig, J.; Prakash, O.; Sheibani, E.; Kjaer, K. S.; Boschloo, G.; Yartsev, A.; Freitag, M.; Lomoth, R.; Persson, P.; Warnmark, K. Dye-sensitized solar cells based on Fe N-heterocyclic carbene photosensitizers with improved rod-like push-pull functionality. Chem. Sci. 12 (2021) 16035-16053. |
[28] | Kar, S.; Sanderson, H.; Roy, K.; Benfenati, E.; Leszczynski, J. Green Chemistry in the Synthesis of Pharmaceuticals. Chem. Rev. 122 (2022) 3637-3710. |
[29] | Naray-Szabo, G.; Mika, L. T. Conservative evolution and industrial metabolism in Green Chemistry. Green Chem. 20 (2018) 2171-2191. |
[30] | Patra, S.; Panda, S.; Acharya, S. S.; Phaomei, G.; Parida, B. B. Green and Sustainable Synthesis of Biaryls Using LaPO4·Pd Recyclable Nanocatalyst by the Suzuki–Miyaura Coupling in Aqueous Medium. ACS Omega (2025) |
[31] | Panda, S.; Patra, S.; Acharya, S. S.; Phaomei, G.; Parida, B. B. Recyclable LaF3·Pd nanocatalyst in Suzuki coupling: green synthesis of biaryls from haloarenes and phenylboronic acids. RSC Adv. 14 (2024) 21269-21276. |
[32] | Acharya, S. S.; Parida, B. B. Humic Acid: A Promising and Green Bioorganic Catalyst in Organic Syntheses. ChemistrySelect 9 (2024) e202305233. |
[33] | Goyal, R.; Sharma, A.; Thakur, V. K.; Ola, M.; Sharma, P. C. Green chemistry approaches towards the design and synthesis of anti-infective fluoroquinolone derivatives. Curr. Res. Green Sustain. Chem. 4 (2024) 100044. |
[34] | Brahmachari, G. Practice of green chemistry strategies in synthetic organic chemistry: a glimpse of our sincere efforts in green chemistry research. Chem. Commun. 60 (2024) 8153-8169. |
[35] | Varma, R. S. Greener and Sustainable Trends in Synthesis of Organics and Nanomaterials. ACS Sustainable Chem. Eng. 4 (2016) 5866–5878. |
[36] | Saxena, B.; Patel, R. I.; Tripathi, J.; Sharma, A. Visible light-assisted chemistry of vinyl azides and its applications in organic synthesis. Org. Biomol. Chem. 21 (2023) 4723-4743. |
[37] | John, S. E.; Gulati, S.; Shankaraiah, N. Recent advances in multi-component reactions and their mechanistic insights: a triennium review. Org. Chem. Front. 8 (2021) 4237-4287. |
[38] | Acharya, S. S.; Sahoo, R. K.; Mohanty, P.; Panda, P.; Parida, B. B. Arylglyoxal-based multicomponent synthesis of C-3 functionalized imidazoheterocycles. Chem. Pap. 78 (2024) 8107-8126. |
[39] | Choudhary, A. Recent development in the synthesis of heterocycles by 2-naphthol-based multicomponent reactions. Mol. Divers. 2021, 25, 1211-1245. |
[40] | Acharya, S. S.; Samantaray, S.; Sibakrishna, C.; Parida, B. B. Pseudo-Multicomponent Reactions of Lawsone: Synthetic Strategies of Bis-Lawsone. ChemistrySelect 10 (2025) e202403416. |
[41] | Nasiriani, T.; Javanbakht, S.; Nazeri, M. T.; Farhid, H.; Khodkari, V.; Shaabani, A. Multicomponent reactions as a potent tool for the synthesis of benzodiazepines. Org. Biomol. Chem. 19 (2021) 3318-3358. |
[42] | Yadav, P.; Varma, A. A.; Punnya, A. J.; Gopinath, P. Photoredox-mediated Multicomponent Reactions. Asian. J. Org. Chem. 11 (2022) e202200390. |
[43] | Acharya, S. S.; Barad, L. M.; Rout, P. R.; Bisoyi, A.; Parida, B. B. Ultrasonication-assisted, multicomponent, green and sustainable synthesis of benzopyrans employing taurine as a bioorganic catalyst. New. J. Chem 49 (2025) 12090-12101. |
[44] | Kumar, R.; Acharya, S. S.; Bhaumick, P.; Parvin, T.; Choudhury, L. H. HFIP-mediated multicomponent reactions for the synthesis of fluorescent quinoline-fused pyrroles. Tetrahedron 132 (2023) 133250. |
[45] | Mishra, R.; Panday, A. K.; Choudhury, L. H.; Pal, J.; Subramanian, R.; Verma, A. Multicomponent Reactions of Arylglyoxal, 4-Hydroxycoumarin, and Cyclic 1,3-C,N-Binucleophiles: Binucleophile-Directed Synthesis of Fused Five- and Six-Membered N-Heterocycles. Eur. J. Org. Chem. (2017) 2789-2800. |
[46] | Kolos, N. N.; Chechina, N. V. Synthesis of Polysubstituted Pyrroles by the Reaction of Enaminoketones, Arylglyoxals, and N,N-Dimethylbarbituric Acid. Chem. Heterocycl. Comp. 55 (2019) 1278–1280. |
[47] | Javahershenas, R.; Khalafy, J.; Prager, R. H. The Application of Arylglyoxals in the Synthesis of Pyrrolo[2,3-d]pyrimidines via Multicomponent Reactions. J. Chem. Rev. 1 (2019) 233-242. |
[48] | Sepehrmansourie, H.; Zarei, M.; Zolfigol, M. A.; Babaee, S.; Rostamnia, S. Application of novel nanomagnetic metal–organic frameworks as a catalyst for the synthesis of new pyridines and 1,4-dihydropyridines via a cooperative vinylogous anomeric based oxidation. Sci. Rep. 11 (2021) 5279. |
[49] | Khalafi-Nezhad, A.; Sarikhani, S.; Shahidzadeh, E. S.; Panahi, F. L-Proline-promoted three-component reaction of anilines, aldehydes and barbituric acids/malononitrile: regioselective synthesis of 5-arylpyrimido[4,5-b]quinoline-diones and 2-amino-4-arylquinoline-3-carbonitriles in water. Green Chem. 14 (2012) 2876-2884. |
[50] | Yadav, R.; Parvin, T.; Panday, A. K.; Choudhury, L. H. Synthesis of styryl-linked fused dihydropyridines by catalyst-free multicomponent reactions. Mol. Divers. 25 (2021) 2161-2169. |
[51] | Rani, R.; Sethi, K.; Kumar, S.; Varma, R. S.; Kumar, R. Natural naphthoquinones and their derivatives as potential drug molecules against trypanosome parasites. Chem. Biol. Drug. Des. 100 (2022) 786-817. |
[52] | Navarro-Tovar, G.; Vega-Rodriguez, S.; Leyva, E.; Loredo-Carrillo, S.; de Loera, D.; Lopez-Lopez, L. I. The Relevance and Insights on 1,4-Naphthoquinones as Antimicrobial and Antitumoral Molecules: A Systematic Review. Pharmaceuticals 16 (2023) 496. |
[53] | Hook, I.; Mills, C.; Sheridan, H. Bioactive Naphthoquinones from Higher Plants. Stud. Nat. Prod. Chem. 41 (2014) 119-160. |
[54] | Widhalm, J. R.; Rhodes, D. Biosynthesis and molecular actions of specialized 1,4-naphthoquinone natural products produced by horticultural plants. Hortic. Res. 3 (2016) 16046. |
[55] | Panday, A. K.; Ali, D.; Choudhury, L. H. One-pot synthesis of pyrimidine linked naphthoquinone-fused pyrroles by iodine-mediated multicomponent reactions. Org. Biomol. Chem. 18 (2020) 4997-5007. |
[56] | Bauer J. D.; King, R. W.; Brady, S. F. Utahmycins A and B, Azaquinones Produced by an Environmental DNA Clone. J. Nat. Prod. 73 (2010) 976-979. |
[57] | Yadav, A.; Gudimella, S. K.; Samanta, S. An Expedient Lewis-Acid-Catalyzed Microwave-Assisted Domino Approach to Coumarin-Fused Pyrroles and Related Heterocycles under Neat Conditions. ChemistrySelect 4 (2019) 12768-12773. |
[58] | Lee, H.-J.; Suh, M.-E.; Lee, C.-O. Synthesis and cytotoxicity evaluation of 2-amino- and 2-hydroxy-3-ethoxycarbonyl-N-substituted-benzo[f]indole-4,9-dione derivatives. Bioorg. Med. Chem. 11 (2003) 1511-1519. |
[59] | Thanh, N. H.; Phuong, H. T.; Anh, L. T. T.; Giang, L. N. T.; Giang, N. T. Q.; Anh, N. T.; Anh, D. T. T.; Kiem, P. V. Synthesis and Cytotoxic Evaluation of Fluoro and Trifluoromethyl Substituents Containing Novel Naphthoquinone-Fused Podophyllotoxins. Nat. Prod. Commun. 17 (2022) 1-6. |
[60] | Alipoor, R.; Mohammadizadeh, M. R.; Saberi, D. New One-Pot Pathway for the Synthesis of 2H–Pyrrolo[2,3-d]Pyrimidine-2,4-(3H)-Diones and 1H-Benzo[f]Indole-4,9-Dione Derivatives Substituted 3-Hydroxy-1,4-Naphthoquinonyl. Polycycl. Aromat. Compd. 43 (2023) 1602-1618. |
[61] | Motiwala, H. F.; Armaly, A. M.; Cacioppo, J. G.; Coombs, T. C.; Koehn, K. R. K.; Norwood IV, V. M.; Aube, J. HFIP in Organic Synthesis. J. Chem. Rev. 122 (2022) 12544-12747. |
[62] | Kant, K.; Patel, C. K.; Banerjee, S.; Naik, P.; Padhi, A.; Sharma, V.; Singh, V.; Almeer, R.; Keremane, K. S.; Atta, A. K.; Malakar, C. C. HFIP-Mediated Cyclodesulfurization Approach for the Synthesis of 2-Aminobenzoxazole and 2-Aminobenzothiazole Derivatives. Asian J. Org. Chem. 13 (2024) e202400223. |
[63] | Colomer, I.; Chamberlain, A. E. R.; Haughey, M. B.; Donohoe, T. J. Hexafluoroisopropanol as a highly versatile solvent. Nat. Rev. Chem. 1 (2017) 0088. |
[64] | Bhattacharya, T.; Ghosh, A.; Maiti, D. Hexafluoroisopropanol: the magical solvent for Pd-catalyzed C–H activation. Chem. Sci. 12 (2021) 3857-3870. |
[65] | Sinha, S. K.; Bhattacharya, T.; Maiti, D. Role of hexafluoroisopropanol in C–H activation. React. Chem. Eng. 4 (2019) 244-253. |
[66] | Mohamadpour, F. 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) as a reusable promoting medium for the catalyst-free and green synthesis of dihydropyrano[2,3-c]pyrazole scaffolds. Results Chem. 9 (2024) 101629. |
[67] | Ghosh, S.; Patra, K.; Baidya, M. Allure of HFIP in Unsaturated Carbon−Carbon Bond Functionalization. Eur. J. Org. Chem. 27 (2024) e202301321. |
[68] | Chaurasia, U.; Parvin, T. Synthesis of coumarin-linked naphthoquinone fused pyrrole derivatives by HFIP-mediated multicomponent reaction. J. Chem. Sci. 135 (2023) 60. |
[69] | Alizadeh, A.; Hasanpour, H.; Rezaiyehraad, R. Efficient, Concise, and Chemoselective Synthesis of 1H-Benzo[f]indole-4,9-dione with 4-Hydroxycoumarin Substituent via a One-Pot Three-Component Reaction. ChemistrySelect 8 (2023) e202303695. |
[70] | Panday, A. K.; Ali, D.; Parvin, T.; Choudhury, L. H. Metal-Free Synthesis of Pyrimidine and Naphthoquinone-Fused Pyrroles from Arylglyoxal-Based Domino Reactions. ChemistrySelect 8 (2023) e202300158. |
[71] | Chaurasia, U.; Parvin, T. Synthesis of Polycyclic Pyrrolopyridine Derivatives via Multicomponent Synthesis of 1,5-Diketones. ChemistrySelect 9 (2024) e202304938. |
[72] | Kumari, A.; Singh, R. K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem. 89 (2019) 103201. |
[73] | Umer, S. M.; Solangi, M.; Khan, K. M.; Saleem, R. S. Z. Indole-Containing Natural Products 2019–2022: Isolations, Reappraisals, Syntheses, and Biological Activities. Molecules 27 (2022) 7586. |
[74] | Ziarani, G. M.; Moradi, R.; Ahmadi, T.; Lashgari, N. Recent advances in the application of indoles in multicomponent reactions. RSC Adv. 8 (2018) 12069-12103. |
[75] | Zhang, X.; Lu, X.; Zhang, P.; Dai, M.; Liang, T. Recent Advances in the Multicomponent Reactions of Indoles. Eur. J. Org. Chem. (2025) e202501446. |
[76] | Darakshan, Chaurasia, U.; Mehar, A.; Parvin, T. Multicomponent synthesis of 3-(1H-indol-3-yl)-2-phenyl-1H-benzo[f]indole-4,9-dione derivatives. Mol. Divers. 29 (2025) 1129-1137. |
[77] | Ziarani, G. M.; Ebrahimi, D.; Mohajer, F.; Varma, R. S.; Iravani, S. The Molecular Diversity Scope of Meldrum's Acid in Multicomponent Reactions. ChemistrySelect 8 (2023) e202302152. |
[78] | Kamalifar, S.; Kiyani, H. An Expeditious One-Pot Three-Component Synthesis of 4-Aryl-3,4-dihydrobenzo[g] quinoline-2,5,10(1H)-triones under Green Conditions. Curr. Org. Chem. 23 (2019) 2626-2634. |
[79] | Nagib, D. A. Asymmetric Catalysis in Radical Chemistry. Chem. Rev. 122 (2022) 15989-15992. |
[80] | Sudarshan, K.; Yarlagadda, S.; Sengupta, S. Recent Advances in the Synthesis of Diarylheptanoids. Chem. Asian J. 19 (2024) e202400380. |
[81] | Sudarshan, K.; Perumal, G.; Aidhen, I. S.; Doble, M. Synthesis of Unsymmetrical Linear Diarylheptanoids and their Enantiomers and Antiproliferative Activity Studies. Eur. J. Org. Chem. 2018 (2018) 6379-6387. |
[82] | Rao, N. N.; Parida, B. B.; Cha, J. K. Cross-Coupling of Cyclopropanols: Concise Syntheses of Indolizidine 223AB and Congeners. Org. Lett. 16 (2014) 6208-6211. |
[83] | Astashko, D.; Cha, J. K.; Rao, N. N.; Parida, B. B. Hydroxy-Directed Cyclopropanation of Esters: Synthesis of Trisubstituted Cyclopropanols. Eur. J. Org. Chem. 2014 (2014) 181-187. |
[84] | Ahmadi, T.; Ziarani, G. M.; Gholamzadeh, P.; Mollabagher, H. Recent advances in asymmetric multicomponent reactions (AMCRs). Tetrahedron: Asymmetry 28 (2017) 708-724. |
[85] | Das, K. K.; Manna, S.; Panda, S. Transition metal catalyzed asymmetric multicomponent reactions of unsaturated compounds using organoboron reagents. Chem. Commun. 57 (2021) 441-459. |
[86] | de Graaff, C.; Ruijter, E.; Orru, R. V. A. Recent developments in asymmetric multicomponent reactions. Chem. Soc. Rev. 41 (2012) 3969-4009. |
[87] | Yu, S.; Hua, R.; Fu, X.; Liu, G.; Zhang, D.; Jia, S.; Qiu, H.; Hu, W. Asymmetric Multicomponent Reactions for Efficient Construction of Homopropargyl Amine Carboxylic Esters. Org. Lett. 21 (2019) 5737-5741. |
[88] | Javahershenas, R.; Nikzat, S. Recent advances in the multicomponent synthesis of heterocycles using tetronic acid. RSC Adv. 13 (2023) 16619-16629. |
[89] | Nguyen, H. T.; Thi, Q. G. N.; Thi, T. H. N.; Thi, P. H.; Le-Nhat-Thuy, G.; Thi, T. A. D.; Le-Quang, B.; Pham-The, H.; Nguyen, T. V. Synthesis and biological activity, and molecular modelling studies of potent cytotoxic podophyllotoxin-naphthoquinone compounds. RSC Adv. 12 (2022) 22004-22019. |
[90] | Mehar, A.; Parvin, T. PEG-mediated synthesis of naphthoquinone/coumarin fused dihydropyridine derivatives. Tetrahedron 160 (2024) 134025. |
APA Style
Acharya, S. S., Das, B., Parida, B. B. (2025). Aminonaphthoquinone: A Versatile Synthon for the Synthesis of Naphthoquinone-fused N-heterocycles via Multicomponent Reactions (MCRs). American Journal of Heterocyclic Chemistry, 10(2), 26-40. https://doi.org/10.11648/j.ajhc.20251002.11
ACS Style
Acharya, S. S.; Das, B.; Parida, B. B. Aminonaphthoquinone: A Versatile Synthon for the Synthesis of Naphthoquinone-fused N-heterocycles via Multicomponent Reactions (MCRs). Am. J. Heterocycl. Chem. 2025, 10(2), 26-40. doi: 10.11648/j.ajhc.20251002.11
AMA Style
Acharya SS, Das B, Parida BB. Aminonaphthoquinone: A Versatile Synthon for the Synthesis of Naphthoquinone-fused N-heterocycles via Multicomponent Reactions (MCRs). Am J Heterocycl Chem. 2025;10(2):26-40. doi: 10.11648/j.ajhc.20251002.11
@article{10.11648/j.ajhc.20251002.11, author = {Swadhin Swaraj Acharya and Bishwajit Das and Bibhuti Bhusan Parida}, title = {Aminonaphthoquinone: A Versatile Synthon for the Synthesis of Naphthoquinone-fused N-heterocycles via Multicomponent Reactions (MCRs) }, journal = {American Journal of Heterocyclic Chemistry}, volume = {10}, number = {2}, pages = {26-40}, doi = {10.11648/j.ajhc.20251002.11}, url = {https://doi.org/10.11648/j.ajhc.20251002.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajhc.20251002.11}, abstract = {The naphthoquinone-fused N-heterocycles are found in natural products and are important candidates in medicinal chemistry. The 1, 3-C, N-binucleophilic property of the 2-aminonaphthoquinone provides access for the synthesis of naphthoquinone-fused N-heterocycles. In recent years this property of 2-aminonaphthoquinone has been acknowledged greatly by the synthetic community for construction of variably dubstituted naphthoquinone-fused N-heterocycles. This review summarizes the important findings in this area during 2019-2024. Also the review highlights the gap and future perspective of the approach. }, year = {2025} }
TY - JOUR T1 - Aminonaphthoquinone: A Versatile Synthon for the Synthesis of Naphthoquinone-fused N-heterocycles via Multicomponent Reactions (MCRs) AU - Swadhin Swaraj Acharya AU - Bishwajit Das AU - Bibhuti Bhusan Parida Y1 - 2025/08/28 PY - 2025 N1 - https://doi.org/10.11648/j.ajhc.20251002.11 DO - 10.11648/j.ajhc.20251002.11 T2 - American Journal of Heterocyclic Chemistry JF - American Journal of Heterocyclic Chemistry JO - American Journal of Heterocyclic Chemistry SP - 26 EP - 40 PB - Science Publishing Group SN - 2575-5722 UR - https://doi.org/10.11648/j.ajhc.20251002.11 AB - The naphthoquinone-fused N-heterocycles are found in natural products and are important candidates in medicinal chemistry. The 1, 3-C, N-binucleophilic property of the 2-aminonaphthoquinone provides access for the synthesis of naphthoquinone-fused N-heterocycles. In recent years this property of 2-aminonaphthoquinone has been acknowledged greatly by the synthetic community for construction of variably dubstituted naphthoquinone-fused N-heterocycles. This review summarizes the important findings in this area during 2019-2024. Also the review highlights the gap and future perspective of the approach. VL - 10 IS - 2 ER -